

Race Of Doom

Developers:

- Peter Wissman CprE
- Gavin Petrak CprE
- Jacob Nedder CybE
- Andrew Kraft EE
- Jack Doe SE

Introduction - What is Race of Doom?

- Project Goal:
 - Designing an autonomous vehicle for competitive racing on a track filled with obstacles and hacking nodes.
- Key Components:
 - Autonomous Steering: Onboard sensors for obstacle detection and avoidance.
 - Remote Speed Control: Vehicle speed controlled remotely.

• Expected Deliverables:

- Track with obstacles and hacking nodes.
- Two autonomous vehicles with remote control capabilities and obstacle detection sensors.
- Design Process:
 - Flexible and open-ended design process allowing students to construct their own autonomous RC car within the allocated budget.

Introduction - Why 3 teams?

- Track Design Team:
 - Ensures the creation of an engaging and challenging track for the race.
- Vehicle Design Teams:
 - Team A: Utilizes a cheap RC car with expensive components.
 - Team B: Utilizes an expensive RC car with cheap components.
- Comparative Analysis:
 - Performance: Evaluate the speed and maneuverability of each vehicle design on the track.
 - Cost-effectiveness: Analyze the cost versus performance trade-offs between the two vehicle design approaches.
- Key Benefits:
 - In-depth Comparison: Allows for a thorough comparison of different design strategies.
 - **Insights for Future Projects:** Provides valuable insights into cost-effective design and performance optimization.
- Outcome Evaluation:
 - Compare results between vehicle design teams and track design outcomes to assess project success and identify areas for improvement.

Introduction - Purpose of the Project

• Objective:

• Designing autonomous vehicles for competitive racing in the Race of Doom.

• Focus on Autonomous Car Technology:

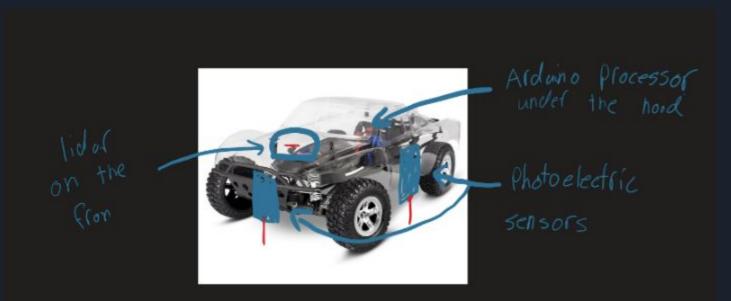
- Harnessing the latest advancements in autonomous technology for real-world application.
- Emphasizing the integration of onboard sensors for obstacle detection and autonomous steering.

• Significance of Race of Doom Teams:

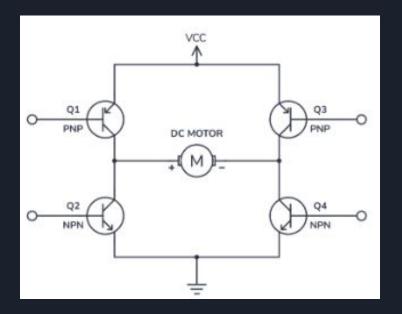
- Fostering collaboration and teamwork among students across different disciplines.
- Providing a platform for students to apply theoretical knowledge to practical, hands-on projects.

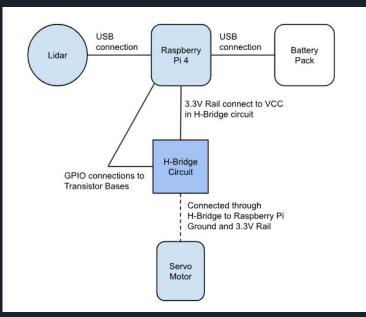
• Building for the Future:

- Establishing a foundation for future Race of Doom teams to iterate upon and improve.
- Learning from mistakes and successes to inform future iterations and advancements in autonomous vehicle design.

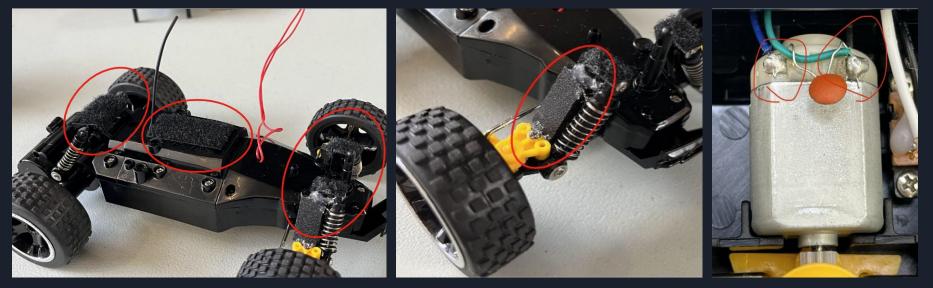

Introduction - Requirements

- The project must stay within the given CPR E program's budget
- The RC Car shall autonomously steer away from obstacles on the track
- The RC Car shall stay within the bounds of the track
- The RC Car shall be protected from the track-hacking source
- The Driver shall control only the speed and acceleration of the RC Car
- The RC Car shall make multiple laps around the track


Design - Initial Design


- Large car body with mounted sensors
- LiDAR for object detection, photoelectric sensors for staying in bounds
- Initial plan used an Arduino for automation
- Original code base in Python
- Design ultimately downscaled to match reduced size of final car body

Design - Hardware - Electrical Components


- Simple H-Bridge Circuit using NPN's and PNP's
- Power Systems Diagram
- Driving motor remains untouched

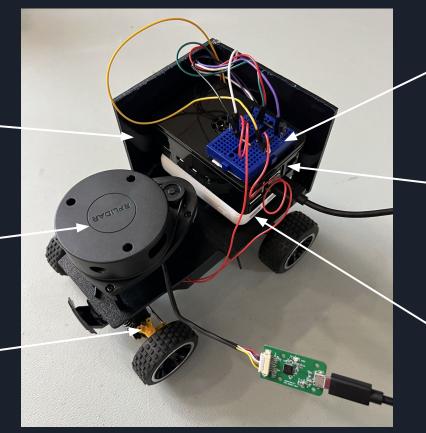
Design - Hardware - Physical Components

Design - Software

// continue straight
gpioWrite(17, 0);
gpioWrite(27, 0);
gpioWrite(13, 0);
gpioWrite(19, 0);
printf("Straight into the wall!\n");

- Initially used Python, switched to C++
 - Compatibility with LiDAR, GPIO, headers
 - LiDAR USB connector provided C++ headers
- LiDAR scans provided valuable information to use in code
 - $\circ \quad \text{Object distance, angle, and quality} \\$
- Created fields that determine autonomous steering based off scans
 - Used a weighting system to formulate decisions
 - Depending on environment, continue straight, left, or right
- Characteristics of code fields based on track constraints
 - "Critical Range" 40 degrees directly in front of the car
 - Laid out special cases for track obstacles

int rightWeight = 0; int leftWeight = 0; int rampWeight = 0;



Design - Final Design

ABS plastic protective shell cut and glued in place

LiDAR sensor connected through daughter board

> RC car base with _____ reinforced suspension

Breadboard with H-bridge turning circuit

Raspberry Pi 4 with wiring running from GPIO ports to Breadboard

 External battery pack to power Raspberry Pi

Testing - Hardware

Circuit Components tested by:

- a. Finding all power requirements for devices
 - Transistors, LiDAR, Raspberry Pi, Servo Motor
- b. Figuring out what circuit design works best
 - H-Bridge
- c. Testing using Multimeter and Voltmeter
 - Initial testing substituted LED's for turning, and voltmeter to power transistors and Servo
- d. Placing final components into circuit
- Physical Components tested by applying force with hand or outside object
 - a. Suspension Upgrades

Before Results	After Results
Top Speed:1.5 m/sec	Top Speed: 0.78 m/sec
Turning Radius: 1.143 m	Turning Radius: 1.27 m
Total Weight: 689.46 grams	Total Weight: 1176.77 grams

Testing - Software

* Placeholder Values for Distance:
*
* Ground < 1000 away.
* Wall < 500 away.</pre>

- * Angle: 300 360, 0 60
- * Critical Wall Angle: 340 360, 0 20
- Initial iterative testing to determine LiDAR Ranges
- Tests to verify correct interface with GPIO pins
- Most testing was integrated testing of whole RC car
 - Senior Design Lab basic turning
 - Day before race track testing

if ((((nodes[pos].angle_z_q14 * 90.f) / 16384.f) > 340)) {
 // Critical wall angle to the right.

	<pre>} else if (((nodes[pos].angle_z_q14 * 90.f) / 16384.f) <</pre>
20) {	// Critical wall angle to the left.

Conclusion - Final Testing/Demonstration Outcome

• Final Testing

- Final testing revealed difficulty driving across bubbles in track material
- RC car provided insufficient power to drive up ramp
- Efficiently navigates track and Faraday cage, avoiding walls
- Performance overall exceeded expectations
- Demonstration Outcome
 - Final Demo lap times:
 - Run 1: 220 sec lap + 60 sec violations = 280 sec total time
 - Run 2: 113 sec lap + 35 sec violations = 148 sec total time
 - Run 3: 135 sec lap + 60 sec violations = 195 sec total time
 - Irregularity of the track cause acceleration issues
 - Issues with card not turning

Conclusion - Design Flaws

• Small RC car body led to several issues

- Insufficient engine power to drive up ramp
- Additional components added enough weight to heavily impact vehicle performance on uneven terrain
- Highly vertical design leads to occasional issues with overhanging track elements
- Code has difficulty differentiating walls and full-track-length obstacles
 - Ex. the entrance to the Faraday cage
 - Ex. the ramp

Conclusion - Future Iterations

- Upgrade the RC car
 - Larger Size for more components
 - More Powerful motors and better steering
 - More space for protecting the components
- Add more components for object detection
 - Ping sensor to cross check our lidar results.
 - Accelerometer for detecting when we reverse
 - Some sort of color detection
 - Could be used in tandem with the track team to know when an obstacle will show
 - up
- Full Autonomy

Conclusion - The Future of Race of Doom

- Plans to continue Race of Doom for future senior design projects
- New teams can make their own decisions based on the project results
 - Avoiding Design Flaws
 - Enhance the code that was used
- More iterations of the project ⇒ Better Requirements and direction
 - Project has been very open to interpretation

Thank you for your time!

Questions?